Eventual regularization for the slightly supercritical quasi-geostrophic equation

نویسنده

  • Luis Silvestre
چکیده

We prove that weak solutions of a slightly supercritical quasi-geostrophic equation become smooth for large time. We prove it using a De Giorgi type argument using ideas from a recent paper by Caffarelli and Vasseur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up for the Generalized Surface Quasi-geostrophic Equation with Supercritical Dissipation

We prove the existence of singularities for the generalized surface quasi-geostrophic (GSQG) equation with supercritical dissipation. Analogous results are obtained for the family of equations interpolating between GSQG and 2D Euler.

متن کامل

Global regularity for the supercritical dissipative quasi-geostrophic equation with large dispersive forcing

We consider the 2-dimensional quasi-geostrophic equation with supercritical dissipation and dispersive forcing in the whole space. When the dispersive amplitude parameter is large enough, we prove the global well-posedness of strong solution to the equation with large initial data. We also show the strong convergence result as the amplitude parameter goes to ∞. Both results rely on the Strichar...

متن کامل

Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (α < 1/2) dissipation (−∆) : If a Leray-Hopf weak solution is Hölder continuous θ ∈ C(R) with δ > 1 − 2α on the time interval [t0, t], then it is actually a classical solution on (t0, t]. AMS (MOS) Numbers: 76D03, 35Q35

متن کامل

On the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces

In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L, with p ∈ [1,∞]. Local results for arbitrary initial data are also given.

متن کامل

Eventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation

This paper studies solutions of the two-dimensional incompressible Boussinesq equations with fractional dissipation. The spatial domain is a periodic box. The Boussinesq equations concerned here govern the coupled evolution of the fluid velocity and the temperature and have applications in fluid mechanics and geophysics. When the dissipation is in the supercritical regime (the sum of the fracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009